
A one-dimensional nonstationary model of filtration of binary low-concentrated 

suspensions in a porous medium is considered, It is shown on the basis of the 
exact solution of the problem that the ratio of component partial concentration 

may induce two modes of concentrat~a~ front dis~~a&ement along the fiJ.ter.& the 
first mode two ~on~entratton waves are formed right at the beginning, while in 
the second a single front is formed at the begiu~~ng which then separates at the 
bifumation point into two waves. Relationships based on laws of conservation 

apply along the waves. 

The majority of filtration systems encountered in nature and technology ( col- 
matage of soil, clarification, etc. ) are characterized by the interaction of fluid and 

solid phases, which results in an alteration of phase properties and, consequently in the 
variation of filtration conditions. As an example of su~hheterogeneoussystem we con- 
sider the filtration of Low concentration suspensions in a homogeneous porous medium 
in which the disperse phase does not affect th~rna~r~co~i~ praperties of the disperse 

medium (density, viscosity, etc. 1. The problem of suspension consisting of particles 
of the same size and the change of their concentration owing to adhesion to the porous 

charge surface was considered in [l. 4 3, However the most important property of fil - 
tered suspensions is the inhomogeneity of their composition, which had not been so far 

investigated, 
Let us consider the problem of filtration of a binary suspension which forms in 

the pores of a stationary medium an incompressible sediment. The equation of clar - 
ification kinetics may be written in this case separately for each fraction as 

where Cl (X, t) is the concentration of the 
is the concentration in the sediment phase, and Bi B the kinetic coefficient that de * 
fines the effectiveness of the ~s~ded matter extraction by the porous medium, 

The filtration rate based on the output is assumed constant, The assumption of 
the sediment ~ncom~r~s~bil~ty and of the van der Waals adhesion forces between part- 
icles of the suspension disperse phase allows to set pi = const. When the sediment 
concentration in a given section reaches pi03 the local hydrodynamic pulling forces 
become equal to forces of molecular attraction of sediment particles, and adhesion 
ceases. The solution for unary suspensions in which kinetics are defined by the above 
equation appears in [5 3. 

In the case of a binary mixture filtration it is necessary to take into account the 
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reciprocal effect of fractions on the adhesion kinetics. Conditions of pre-filtration 
physicochemical processing of suspensions (coagulation, flocculation, sedimentation) 
can improve the conditions of clarification of one of the fractions, hence it is possible 

to set&o > PzoandP 1 > I&. The equations of kinetics are of the form 

4% 1 fi2c2 for p2 < pzo’ 11 p1 -i- [,* < [lo (2 1 
at= 0 for p. = Pro’ Ii.511 [Jl +- pz = 00 

which formalizes the following property of binary sediment formation: adhesion ceases 
when the limit capacity of the filter. PO, which generally is not equal plocis reached. 
Adhesion of the second fraction ceases when the concentration of its sediment reaches 
the partial capacity t&o’ < PO. 

The system is closed by the equations of component material balance 
aci aiJ, 

UIx-/-,-= 0 (i -- I, 2) (3) 

where w is the filtration rate. (We neglect in Eq. (3) the term a, dci/&,which for’p;, 
>> cio is considerably smaller than iip,/dt, where a, is the filtering layer porosity ) .The 
boundary value problem for the dynamics of the front in the initially clean filter is de- 
fined by the following conditions ; 

ci (0, t) == cio, pi (.‘t’, 0) = 0 (4) 

where cio = con& defines partial concentrations of the filter inlet cross section 5 = 0, 
We introduce the dimensionless variables 

X=4$, T = + , I? = c,o~c_,o, , Ui = 
9 , - 1 Cl0 + ‘C-20 

ui= +7 CT0 Pi0 B1 
.a= 

Cl0 + cm ' 
Y=-, 

PU b=K 

where on the basis of previously made assumptions v < 1 and b > 1. 
Integration of Eqs. (1) - (4) along the characteristic T = 0 yields 

% (X7 0) = (1 - 8) exp (--bX), u2 (X, 0) = E exp (-X) (5) 

It is obvious that (5) is a solution of the system for 0 < T < TOl7 where ToI is the 
instant of time at which limit saturation (cut-off) for the first or second component is 
reached at cross section X = 0 . Substituting (5 1 into (1) and (2 1. we obtain 

vr (X, T) = b (1 - E) T exp (--bX), v2 (X, T) = ET exp (-X) (6) 

The condition of the inlet cut-off then assumes the form 

us (0, T) = v or ~1 (0, T) 4 ~2 (0, Tj = 1 

Hence two variants of the cut-cff at the intake cross section X = 0 are possible. 

1”. Cut-off due to second component 

712 (0, Tor) = v (7) 

2O. Cut-off due to the sum of the two components 

~1 (0, To,) + vz (0, Toz) = 1 ( 3) 
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Let us consider these variants, 

1’. The substitution of (7 1 into (6 1 yields ?‘,, = Y/E. At instant TOI the 

total concentration of the sediment atX = ois 

VI@, TOI) i- uz (0, T,,) = v + vb + 

Hence the criteria of occurrence of these variants are 
1-E 

v+vby < I(for variants 1”) (9) 

v + vb + > l[for variantsY) 

In dimensional quantities the criterion (9) for variant 1’ may be represented in the form 

-++(*- 1) 

The kinetic coefficients fil and fis, as well as the partial and over-all dirt 

content concentrations psO’ and p,, respectively, are physical constants determined 

by the properties of suspension and porous medium.Because of this the fulfilment of 

condition (9) for variant 1’ depends on partial concentrations CIO and Cso. When that 
condition is satisfied, the solution of system (1) - (4 ) is of the form 

us = E exp (- X), u, = eTexp(- X) for O<T,<$- 

us = E exp 
( 

-x-1,+1’), u2 = v exp 
i 

-x-I++T) 

for -$QT*<$(X$-I) 

u‘s = E, 272 = v for -$(X-H),<T<oo 

The first component moves over the partly saturated layer, hence the cut-off of each 

cross section with respect to the sum of components takes place after the given cross 
section has been saturated by the second component. The solutions for. u1 and vI ,are 

then of the form 

~1 = (1 -e)exp(-bX), vi = b(l --)Texp(-Ki) 

for O<Tcs<.~ 

UI = (1 - E) sxp [- bX - t + bT (1 - E) (I - v)-11, 

Vi = (1 - V) (1 - E)-lu.l for 
1 l---Y 

TG\<T\( g(X+$) 

111 = 1 - E, zi* = 1 - v for E(X4+)<T<oo 

Thus in case 1 ’ two concentration waves are formed at the intake cross section. 

The formation of waves needs time which for the first phase is equal b-Y1 - V) i 
(1 - E), and for the second V i E. The wave of the second component moves over 

the layer at velocity (T2 = E/V, and simultane~sly with this a wave in the sediment 

phase moves in-phase with the wave in the fluid phase. These waves satisfy the con - 

dition 3 __ ‘I2 

E -y (T>$) 
( 10) 
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The first component wave moves along the filter at velocity Ur = (1 - E) / (1 - v) 
( 8s. In-phase with it moves the sediment wave. Condition 

Ul Vl -=- 
1-E l-v 

T>++-=) (li) 

is satisfied along these waves. 

2”. When at cross section X = 0 the cut-off is effected with respect to the 
sum of components, then at instant T,, condition 

is satisfied. 
The substitution of (6) into (8) yields To2 = [b (1 - E) + E]-~, and then 

nz (u, Tas) = a [b (1 - E) + &I-* < V, which conforms to condition (9) for var- 
iant 2’. 

For obtaining the solution of system (1) - (3 1 for T > T,s we introduce 
function X = XI* (T) which indicates the coordinate of the cut-off cross section at 

instant T. The conditions at that cross section are 

u1 (X1*, T) = 1 - E, uy (XI*, T) = E (12) 

Dl (xl*7 T) + v2 

We seek a solution of the form 

n1 (1 - e)fr (T) exp (- 

(fr (0) = fs (0) = 1) 

where the initial conditions for fl are 
From condition (12 1 we have 

(Xl* 7 T) = 1 

bX), u2 = af2 (T) exp (-X) 

implied by formulas (5 ) . 

( 13 ) 

f~ (T) = exp [bX,* (T)l, f2 (T) = exp ix,* (T)l 

and from the equation of balance (3 1 we obtain 

u1 (X, T) = To2b (1 - E) exp (- bX! + 

b (1 - E) exp (- bX) [ exp [bX,* (z)] dz 
TO2 

( 14) 

u2 (X, T) = To+ exp (- X) + E exp (- X) [ exP [XI* (r)l dz 

( 15 1 

TM 

Condition (13 ) at the cut-off point makes it possible to obtain the integral 
equation of’ XI’ (T) by rewriting it in the following equivalent form for cross section 

X and cut-off time T,* (X) 

4 = T,,[b(l -e)exp(-bX)+texp(-XX)] + (1’5) 
TX*(X) 

b (I- E) exp (- bX) 5 exp [bX1* (T)] dz + 
To, 

T,*(x) 
Eexp(,--- Y, i ,‘I;!1 j \ !* t : jl ,!r 
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where (T1*is the inverse function of Xl* 
With the use of substitution E = Xl* (T) Eq. (16 1 can be represented as follows. 

1 = T,* G-) 
X 

T 02 -- 6” (1 - 8) exp (- bX) * exp (bE) T,* (g) dg --( 17 ) 
s 
0 

E =I (-- X) 
s 

exp gTl* (6) dt 
” 

which after double differentiation yields the equation 

s + &PO2 ?$ - bToz = 0 

T,” (‘-‘) = Toa, dTl* w zzz T$ It” (1 - E) + E] dX > 

whose solutionis 

T,*(X) = To2 + X + (bTo,)-iTo22{b2(1 - E) + ~1 - I} x (18) 
11 - exp (--XbT,,)l 

which satisfies the conditions appearing above in parantheses (the second condition is 
obtained from (1’7 1 after differentiation with respect to X). Having determined with 
the use of (18 ) the inverse function X,* (T) we substitute it into (14) and (15 1 and 

can, then determine the solution foi ZJ~ and GI . 
A singularity of the considered here case 2 ’ is the possibility of solution bifur- 

cation is that at some cross section X, at instant To besides (13 ) the cut-of condition 

for the second fraction, viz. v2 (X0, To) = Y or with allowance for (15 1 

v = TO$? exp (- X0) + etexp (- X0) y exp [X1* (u)] dx 
7;cr 

Substituting (18 1, we obtain 

X0 = (bTo2)-’ In x, x = (1 - E) e (b - I)(& - v)-qb (I- (19) 
c) + cl-1 

The necessary condition of bifurcation that obviously is implied by (19) is that 

II>1 ( 20 ) 

Because b > 1 > 0, from (20) we have 

E--Y>0 
( 21) 

and in this case condition (20 > is equivalent to condition (9 ) for variant 2 ‘. Since the 
last condition must be satisfied together with condition (211, there exists an interval 
of partial concentration of the second fraction in which the bifurcation mode 

is realized. 

V<E< 
Vb 

1 +v(b-1) 

Parameter 2’0 is calculated by substituting X0 into solution (18 ) 

To = Xo + vb-’ (b - I) + b-l 

( 2‘2 1 
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Beyond the bifurcation point X, p, the solution of Xl* (2’) splits and 
functions Ui and Vf assume the form 

~1 (X, 2’) = To& (1 - e) exp (- b_X) + ( 23 1 

b(l -~)exp(--bX)i exp[bX~*(~)J~~~ i- 
T, 
T 

b(l - .s) exp(- bX) l exp (bXal* (z)] dz 
T* 

TO 
uz (X, T) = Tote exp (- X) + E exp (-- X) 1 exp [X,*(z)] dz _i- 

TW 

eexp(- X) T exp I-L* 0-N dz 

u1 (X, T) = (?-- E) exp [--bX + bX,,* (T)] 

L12 {X, T) = 8 6xp I-X + X,,” (T)l 

which is similar to that of formulas (14 1 and (15 1. The two functions Xsr” (T) and 
xs,* (T) which appear in formulas (23 ) define the coordinate of the cut-off at in - 

stant T with respect to the first and second component, respectively. 
Equations for X,,* and X,,* are obtained from the cut-off condition 

% IX, T,,” (X)1 = f - Y, v, IX, T,,” (X)] = Y ( 24 ) 

where T,,* and .T2,* are inverse functions of X,,* and X,,* . Substituting the 
first two expressions oft23 ) into corr~ponding conditions (24 1, we obtain integral 
equations that are similar to (1‘7) and whose solutions are of the form 

Thus when condition (22 1 is satisfied in case 2 O, the ehara~te~stic unction 
Tr* (X) is transformed at the bifurcation point into two straight lines whose angles of 

inc~nation are 01 and as (see case 1’ 1. 
It is now possible to outline the pattern of concentration variation ahead and 

behind the critical cross sections, i . e. for X < X0 and X > Xw 
For X ( X, concen~a~o~ ul and ztr are defined by the equations 

Ur = (1 - E) exp I--bX + bX,* (T)l 
%2 = E exp [-X + X,” (T)l 

Thus the pattern of concentration curves are similar : along the single wave 
condition 

b-’ In z&r / (1 - E) = In Us / E 

is satisfied, and at instant Tr* (X) the cut-off of the section takes place. At the 
same time the concentrations attain their initial values 1 - E and E. 

When X > X0 the pattern of concentration curves at T,, < T < To 
& the same as at the subcritical cross sections; however. at instant To two wzvw are 
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formed which propagate at velocities 01 and o,. The structure of these waves is de- 
termined h-3 the equations ur = (1 - e) exp f-bX + bX,,* (T)] for T, < 

2’ < 2’s,* @land byu, = E exp f-X + X2,* (T)f for T, < T < T,,* (X). 
Note that conditions (10 1 and Cl.1 1 are satisfied along the concentration fronts, 

Downstream of the bifurcation point the pattern of concentration variation becomes 
simliar to that considered in case 1’. Time T, is required for the wave relatio~hips 

(10 > and (11) to establish themsleves. 

The author thanks A. G Kulikovskii for useful discussions. 
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